Finvu Data Warehouse Documentation

Finvu Home
πŸ₯ˆ

Where raw data transforms into business intelligence. The strategic heart of Finvu’s data architecture.

πŸ—ΊοΈ The Journey So Far

πŸ₯‰

Bronze Layer

Raw data ingestion, immutable storage, complete audit trail

πŸ₯ˆ

Silver Layer

Data transformation, cleansing, business logic application

πŸ₯‡

Gold Layer

Aggregated metrics, business KPIs, ready for consumption

🎯 The Silver Layer Vision

What Silver Layer Achieves

  • βœ“Data Quality: Cleansing, validation, and standardization
  • βœ“Business Context: Applying domain knowledge and rules
  • βœ“Schema Evolution: Consistent, versioned data models
  • βœ“Performance: Optimized for analytical workloads

For Finvu’s Account Aggregation

  • 🏦Unified account schemas across FIPs
  • πŸ“ŠEnriched transaction categorization
  • πŸ”’Privacy-compliant data transformations
  • ⚑Real-time consent state management

πŸ—οΈ Technical Architecture Deep Dive

Silver Layer Data Flow

graph TB
    subgraph "Bronze Layer"
        B1[Raw FIP Data]
        B2[Kafka Events]
        B3[API Logs]
        B4[Consent Events]
    end
    
    subgraph "Silver Layer Processing"
        S1[Data Quality Engine]
        S2[Schema Harmonization]
        S3[Business Rules Engine]
        S4[Privacy Processor]
        S5[Change Data Capture]
    end
    
    subgraph "Silver Tables"
        ST1[accounts_silver]
        ST2[transactions_silver]
        ST3[consents_silver]
        ST4[fip_metadata_silver]
        ST5[data_quality_metrics]
    end
    
    B1 --> S1
    B2 --> S2
    B3 --> S3
    B4 --> S4
    
    S1 --> S5
    S2 --> S5
    S3 --> S5
    S4 --> S5
    
    S5 --> ST1
    S5 --> ST2
    S5 --> ST3
    S5 --> ST4
    S5 --> ST5
    
    style S1 fill:#e1f5fe
    style S2 fill:#e8f5e8
    style S3 fill:#fff3e0
    style S4 fill:#fce4ec
    style S5 fill:#f3e5f5

πŸ” Data Quality Engine

  • β€’ Automated data profiling and anomaly detection
  • β€’ Schema validation against FIP specifications
  • β€’ Data completeness and accuracy scoring
  • β€’ Quarantine and remediation workflows

πŸ”„ Schema Harmonization

  • β€’ Unified account and transaction schemas
  • β€’ FIP-specific field mapping and normalization
  • β€’ Data type standardization and conversion
  • β€’ Version management for schema evolution

βš™οΈ Business Rules Engine

  • β€’ Transaction categorization and enrichment
  • β€’ Account balance reconciliation logic
  • β€’ Duplicate detection and deduplication
  • β€’ Business metric calculations

πŸ”’ Privacy Processor

  • β€’ Consent-based data access controls
  • β€’ PII masking and tokenization
  • β€’ Data retention policy enforcement
  • β€’ Audit trail for privacy compliance

πŸš€ Silver Layer Implementation Strategy

1️⃣

Foundation Phase

  • β€’ Core schema design and validation
  • β€’ Data quality framework setup
  • β€’ Basic transformation pipelines
  • β€’ Monitoring and alerting infrastructure
2️⃣

Enhancement Phase

  • β€’ Advanced business rules implementation
  • β€’ ML-powered data enrichment
  • β€’ Real-time processing capabilities
  • β€’ Performance optimization
3️⃣

Scale Phase

  • β€’ Multi-region deployment
  • β€’ Advanced analytics features
  • β€’ Self-service data access
  • β€’ Automated governance

🎯 Key Technical Decisions

Processing Architecture

Stream Processing

Real-time consent updates, account balance changes

Batch Processing

Historical data reconciliation, complex enrichments

Micro-batch

Transaction categorization, data quality checks

Storage Strategy

Delta Lake Tables

ACID transactions, time travel, schema evolution

Partitioning Strategy

By date, FIP, and account type for optimal performance

Compression & Indexing

Z-ordering, bloom filters for fast lookups

πŸ›€οΈ The Path Forward

Immediate Next Steps

1Design core Silver schemas for accounts and transactions
2Implement data quality validation framework
3Build FIP data harmonization pipelines
4Establish monitoring and alerting systems

Success Metrics

πŸ“Š
Data Quality Score:>95% accuracy across all FIPs
⚑
Processing Latency:<5 minutes for real-time updates
πŸ”„
Schema Evolution:Zero-downtime updates
🎯
Business Value:50% reduction in data prep time